Functional site plasticity in domain superfamilies☆

نویسندگان

  • Benoit H. Dessailly
  • Natalie L. Dawson
  • Kenji Mizuguchi
  • Christine A. Orengo
چکیده

We present, to our knowledge, the first quantitative analysis of functional site diversity in homologous domain superfamilies. Different types of functional sites are considered separately. Our results show that most diverse superfamilies are very plastic in terms of the spatial location of their functional sites. This is especially true for protein-protein interfaces. In contrast, we confirm that catalytic sites typically occupy only a very small number of topological locations. Small-ligand binding sites are more diverse than expected, although in a more limited manner than protein-protein interfaces. In spite of the observed diversity, our results also confirm the previously reported preferential location of functional sites. We identify a subset of homologous domain superfamilies where diversity is particularly extreme, and discuss possible reasons for such plasticity, i.e. structural diversity. Our results do not contradict previous reports of preferential co-location of sites among homologues, but rather point at the importance of not ignoring other sites, especially in large and diverse superfamilies. Data on sites exploited by different relatives, within each well annotated domain superfamily, has been made accessible from the CATH website in order to highlight versatile superfamilies or superfamilies with highly preferential sites. This information is valuable for system biology and knowledge of any constraints on protein interactions could help in understanding the dynamic control of networks in which these proteins participate. The novelty of our work lies in the comprehensive nature of the analysis - we have used a significantly larger dataset than previous studies - and the fact that in many superfamilies we show that different parts of the domain surface are exploited by different relatives for ligand/protein interactions, particularly in superfamilies which are diverse in sequence and structure, an observation not previously reported on such a large scale. This article is part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diversity in protein domain superfamilies

Whilst ∼93% of domain superfamilies appear to be relatively structurally and functionally conserved based on the available data from the CATH-Gene3D domain classification resource, the remainder are much more diverse. In this review, we consider how domains in some of the most ubiquitous and promiscuous superfamilies have evolved, in particular the plasticity in their functional sites and surfa...

متن کامل

Length Variations amongst Protein Domain Superfamilies and Consequences on Structure and Function

BACKGROUND Related protein domains of a superfamily can be specified by proteins of diverse lengths. The structural and functional implications of indels in a domain scaffold have been examined. METHODOLOGY In this study, domain superfamilies with large length variations (more than 30% difference from average domain size, referred as 'length-deviant' superfamilies and 'length-rigid' domain su...

متن کامل

FunTree: a resource for exploring the functional evolution of structurally defined enzyme superfamilies

FunTree is a new resource that brings together sequence, structure, phylogenetic, chemical and mechanistic information for structurally defined enzyme superfamilies. Gathering together this range of data into a single resource allows the investigation of how novel enzyme functions have evolved within a structurally defined superfamily as well as providing a means to analyse trends across many s...

متن کامل

Large-Scale Analysis Exploring Evolution of Catalytic Machineries and Mechanisms in Enzyme Superfamilies

Enzymes, as biological catalysts, form the basis of all forms of life. How these proteins have evolved their functions remains a fundamental question in biology. Over 100 years of detailed biochemistry studies, combined with the large volumes of sequence and protein structural data now available, means that we are able to perform large-scale analyses to address this question. Using a range of c...

متن کامل

Sequence analysis Functional classification of CATH superfamilies: a domain-based approach for protein function annotation

Motivation: Computational approaches that can predict protein functions are essential to bridge the widening function annotation gap especially since <1.0% of all proteins in UniProtKB have been experimentally characterized. We present a domain-based method for protein function classification and prediction of functional sites that exploits functional sub-classification of CATH superfamilies. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1834  شماره 

صفحات  -

تاریخ انتشار 2013